Problems from the upcoming 7th Edition of *Applied Calculus* by Hughes Hallett, et al.

Sample problems – Section on Linear Functions

- 1. Facebook's annual ad revenue increased every year from 2011 through 2018, and each year the increase in revenue was larger than the year before.¹ Was the growth in revenue linear?
- 2. Let *t* be in quarter-years after the last quarter of 2018. Zoom,² the video conferencing company, had quarterly revenue *R* through t = 5 of about

$$R = 44.6 + 15.5t$$
 million dollars

Then, from t = 6 onward in 2020, quarterly revenue was about

R = 11.6 + 22.1t million dollars

- (a) Interpret the slope of each function.
- (b) What might have caused the change in slope at the time it happened?
- 3. Figure 1 shows the 0–60 mph acceleration time, A (in seconds), for the best-accelerating cars³ of the year, t years after 1955, where A = -0.0566t + 6.

- (a) What are the units and meaning of the
 - (i) Slope? (ii) Vertical intercept?
- (b) In what year is the 0–60 mph acceleration time predicted to drop to 1 second?

0 to 60 mph time (seconds)

Sample problems – Section on Average Rate of Change and Relative Change

- 4. Figure 2 shows graphs of US advertising revenue (in billions of dollars) for print newspapers and for the internet⁴ as a function of years since 1997.
 - (a) Which graph, *A* or *B*, is the graph of newspaper ad revenue? Explain how you know.
 - (b) Find the average rate of change of newspaper ad revenue and of internet ad revenue between 1997 and 2016. Include units and explain the signs.

- 5. Let P(t) be the total number of Covid-19 cases in Minnesota confirmed up to and including day t, where t = 0 is March 5, 2020.⁵ Let N(t) be the number of new cases confirmed on day t. What does each statement mean in the context of the outbreak?
 - (a) P(37) P(36) = 80
 - **(b)** (P(37) P(36))/P(36) = 0.074 = 7.4%
 - (c) (P(37) P(36))/P(37) = 0.069 = 6.9%
 - (d) P(35) + N(36) + N(37) = 1164

¹https://i1.wp.com/www.mekkographics.com/wp-content/uploads/2019/03/Slide39.png

²news.alphastreet.com/infographic-zoom-video-communications-zm-q2-2021-earnings-results, accessed March 23, 2021.

³Cars tested by *Car and Driver* Magazine, https://www.caranddriver.com/features/g15383525/car-and-driver-tested-the-quickest-cars-from-the-1950s-to-today/?slide=4, accessed January 9, 2021.

⁴Based on 2017 research by David Flath using www.journalism.org/fact-sheet/newspapers, www.iab.net, and fred.stlouisfed.org/series/GDPDEF.

⁵Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed January 17, 2021.

2 ©2022 John Wiley & Sons

Sample problems – Section on Exponential Functions

- 6. In 2020, Arizona's second wave of Covid-19 infections grew at 3% a day; that is, the number of confirmed cases grew by a factor of (1.03)^{*t*} over *t* days. Covid-19 confirmed cases in West Virginia in 2020 grew at 1.75% a day; that is, by a factor of (1.0175)^{*t*} over *t* days.⁶
 - (a) By what factor did Arizona's cases grow over four months? How about West Virginia's cases?
 - (b) Notice that Arizona's daily percent growth rate is nearly double the daily percent growth rate in West Virginia. Is the 4-month growth factor for Arizona approximately double the 4-month growth factor for West Virginia?

Sample problems – Section on The Natural Logarithm

- 8. A quantity is growing exponentially: $P = P_0 e^{kt}$, with P_0 and k constant.
 - (a) Show that a plot of y = ln P against t, with t on the horizontal axis, is a line.
 - (b) What is the slope of the line?
 - (c) What is its vertical intercept?
- 9. Use the results of Problem 8. Let *P* be the total number of Covid-19 cases in South Africa⁹ confirmed up to day *t*, where *t* = 0 is March 18, 2020. Figure 3 shows ln *P* plotted against *t*.
 - (a) Estimate the continuous growth rates before and after the bend in the graph at about t = 10 days.
 - (b) What might have happened to lead to the bend in the graph?

Sample problems - Section on Exponential Growth and Decay

10. The Outer Banks are a string of linked islands off the coast of North Carolina. Rising sea levels are eroding the beach and threatening the only road. Avon, a small community, is deciding how to pay for "beach nourishing," which builds up the beach with sand, but has to be repeated every 5 years. If the nourishings cost \$12 million each and the first is in one year, what is the present value of a sequence of four beach nourishings?¹⁰ Assume the interest rate is 1.5%, compounded annually.

- 7. On June 16, 2020, the New York Times wrote,⁷ "The World Health Organization said last week that confirmed cases in Africa had doubled in 18 days to reach 200,000; the first 100,000 took 98 days."
 - (a) Make an exponential model for the total number of Covid-19 cases in Africa during the initial 98 days. Use the fact that on the first day there was one confirmed case in Africa.⁸
 - (**b**) How does your model's prediction for day 116 compare to the number 200,000 in the article?

- 11. In the Netherlands, a total of 337,245 Covid-19 cases had been confirmed by November 1, 2020. With *t* in days since November 1, the total number of cases, P(t), was growing at 3.4% per day.¹¹
 - (a) Find the total number of cases expected in the Netherlands by December 31, 2020 (t = 60) if the growth rate remained constant.
 - (**b**) Find a new growth factor *a* making the number of total cases on December 31, 2020 half of the number predicted in part (a).

⁶Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed January 10, 2021. ⁷https://www.nytimes.com/2020/06/16/world/africa/coronavirus-africa.html accessed January 10, 2021. ⁸https://github.com/owid/covid-19-data/tree/master/public/data, accessed March 26, 2021.

⁹Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed July 5, 2020.

¹⁰https://news.yahoo.com/tiny-town-big-decision-willing-121315761.html, accessed March 15, 2021.

¹¹Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed February 26, 2021.

Sample problems – Section on The Derivative Function

- 12. Table 1 shows the area, A, covered by Arctic sea ice in millions of square kilometers between 2017 and 2020.¹² Let A = f(t) for t in years since 2000.
 - (a) Does f'(t) appear to be positive or negative? Interpret in terms of Arctic sea ice.
 - (b) What is f(17)? Estimate f'(17). Give units.
 - (c) What is f(20)? Estimate f'(20). Give units.

Sample problems - Section on Interpretations of the Derivative

- Johns Hopkins University reports two numbers daily for Covid-19 cases in each US state:¹³
 - *P*(*t*): the total number of cases confirmed up to time *t*, in days
 - N(t): number of new cases confirmed on day t.
 - (a) What are the units of P'(t)?
 - (b) Explain the meaning of P'(t) in the context of the pandemic.
 - (c) Explain why N(t) and N(t + 1) are good approximations for P'(t).
- 14. Figure 4 shows the total number P(t) of Covid-19 cases in New York confirmed on or before day t, where t = 0is March 15, 2020. Figure 5 shows N(t), the new cases on day t for New York, Florida, Maine and Wyoming.¹⁴ Use the fact that $dP/dt \approx N$ to identify the N(t) graph for New York.

Sample problems - Section on Marginal Cost and Revenue

- 16. Figure 6 shows marginal revenue, *MR*, as a function of quantity, *q*, of an item produced. Match each graph (I)–(IV) with one of the statements (a)–(d).
 - (a) Constant price
 - (b) As quantity increases, price decreases and then increases

Table 1

Year	2017	2018	2019	2020
Sea Ice (mn km ²)	4.82	4.79	4.36	3.92

- 15. The range R = f(T) of an electric vehicle, the average distance (in miles) it is expected to travel on a fully charged battery, depends on the outside temperature T (in degrees Fahrenheit). For a 2014 Nissan Leaf¹⁵ f(50) = 72 and f'(50) = 0.6.
 - (a) What are the units and meaning of

(i) f(50) = 72? (ii) f'(50) = 0.6?

- (b) What is an approximate range for the Leaf at 55°F?
- (c) As quantity increases, price decreases
- (d) Price increasing with quantity

¹²https://climate.nasa.gov/vital-signs/arctic-sea-ice/, accessed 3 April, 2021. To facilitate yearly comparisons, the values shown were all in September, usually the lowest point of the year.

¹³https://coronavirus.jhu.edu/us-map

¹⁴Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed October 22, 2020.

¹⁵https://blog.ucsusa.org/dave-reichmuth/electric-cars-cold-weather-temperatures, accessed on January 11, 2021

4 ©2022 John Wiley & Sons

Sample problems - Section on Using the Derivative

- 17. Figure 7 shows the total number P(t) of Covid-19 cases in Arizona confirmed on or before day *t*, where t = 0 is March 1, 2020;¹⁶ N(t) is the number of new cases on day *t*, approximated by P'(t).
 - (a) Which of the following are the approximate *t*-values of local maxima of N(t)? (Select all that apply.) t = 0, 110, 130, 150, 190, 260, 320, 360.
 - (**b**) Which, from the previous list, are the approximate *t*-values of local minima of *N*(*t*)?

Sample problems - Section on Inflection Points

18. Figure 8 shows the total number P(t) of Covid-19 cases (in millions) in California¹⁷ on or before day *t*, where t = 0 is April 1, 2020. Estimate the *t*-values of two inflection points and explain their significance in terms of the number of daily new cases, approximated by P'(t).

¹⁶Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed March 24, 2021.
¹⁷Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed March 1, 2021.

19. The range R of an electric vehicle, the average distance (in miles) it is expected to travel on a fully charged battery, depends on the outside temperature T (in degrees

Fahrenheit). Figure 9 shows R = f(T) for the 2014 Nissan Leaf.¹⁸

- (a) At what temperatures does the graph have inflection points?
- (b) At which temperature does an increase in temperature add the most to the range of the Leaf? How is this temperature related to the inflection points?

Sample problems - Section on Analyzing Antiderivatives Graphically and Numerically

- In Problems 20–21, graphs (I)–(IV) show Covid-19 data from two different countries.¹⁹ For each country, one graph is of P(t) and one graph is of N(t), where
 - P(t): total number of cases on or before day t
 - *N*(*t*): number of new cases confirmed on day *t*.
 - Use the fact that P(t) is an antiderivative of N(t) since $P'(t) \approx N(t)$.
 - (a) Which of graphs (I)–(IV) are graphs of P(t)?
 - (b) Match each P(t) with its corresponding N(t).

¹⁸ https://blog.ucsusa.org/dave-reichmuth/electric-cars-cold-weather-temperatures, accessed January 11, 2021.

¹⁹Smoothed from JHU CSSE COVID-19 data at github.com/CSSEGISandData/COVID-19, accessed May 3, 2021.